
Some facts about harmonic functions on C or R2

By Lee Man Chun

1 holomorphic functions and harmonic functions

This note is about some basic fact of harmonic functions. From my point of view, some

properties of holomorphic functions seems to be too mysterious. So here is some fact from

PDE point of view to explain some of them from the aspect of real functions. There are few

reasons which connects harmonic function with holomorphic functions, although holomor-

phic functions are more restrictive than harmonic functions.

Say f is holomorphic, then

1. Re(f) and Im(f) are harmonic.

2. |f |2 is subharmonic.

3. log |f | is harmonic if f 6= 0 and is subharmonic in the weak sense in general.

In fact, there are much more stuff related to harmonic functions itself. If you are inter-

ested, you may take a look on the book ”Harmonic function theory” by Sheldon Axler, Paul

Bourdon and Wade Ramey.

Definition 1.1. A function u ∈ C2(Ω), Ω ⊂ C is said to subharmonic (superharmonic) if

∆u ≥ (≤)0. In particular, u is harmonic if u is both subharmonic and superharmonic.

Remark: We can still define harmonicity for a weaker class of functions, say W 2,p.

You can google for more information.

1.1 Mean value property & Maximum principle on Rn

Theorem 1.2. (Mean value property)Let u ∈ C2(Ω) with ∆u ≥ 0. Suppose x0 ∈ Ω and

r > 0 such that B(x0, r) ⊂ Ω, then

u(x0) ≤
 
B(x0,r)

u(x) dV ,

 
∂B(x0,r)

u(x) dA.

Proof. Define

f(r) =
1

rn−1

ˆ
∂B(x0,r)

u(x) dA =

ˆ
∂B(0,1)

u(a+ rω) dA1

We have

f ′(r) =

ˆ
∂B(0,1)

∂u

∂n
|a+rω dA1 =

1

rn−1

ˆ
∂B(a,r)

∂u

∂n
dA

=
1

rn−1

ˆ
B(a,r)

∆u dV ≥ 0.
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Hence, for all r > ε > 0, f(r) ≥ f(ε). Result follows from taking ε → 0 and the continuity

of u. Another inequality follows from integrating over r.

Theorem 1.3. (Strong Maximum Principle)Let u ∈ C2(Ω) with ∆u ≥ 0. Suppose there

exists x0 ∈ Ω such that u(x0) = supΩ u(x). Then u is a constant function.

Proof. From the mean value property of subharmonic function, if it achieves maximum some-

where, it is locally constant. Hence, the function is constant function by the connectedness

of Ω.

The following global conclusion follows immediately.

Theorem 1.4. (Weak Maximum principle) Let u ∈ C2(Ω) ∩ C0(Ω̄) with ∆u ≥ 0 and Ω

being bounded in Rn, then
sup

Ω
u = sup

∂Ω
u.

Consequently, for harmonic function u,

inf
∂Ω
u ≤ u(x) ≤ sup

∂Ω
u, ∀x ∈ Ω.

Remark: If Ω is unbounded, the conclusion clearly fails. For example, take u(x, y) = y

on R2.

1.2 fundamental solution of ∆ on C

Recall the fundamental solution of ∆f = 0 in dimension 2:

Γ(x− y) =
1

2π
log |x− y|.

In particular, the fundamental solution goes to ∞ as x → ∞. This property yields the

following feature of dimension 2.

Theorem 1.5. Let u ∈ C2(C) with ∆u ≥ 0. If u = o(log r), then u is constant.

Proof. Consider uε = u− ε log r on B(0, 1)c. Since u = o(log r), we have

uε → −∞ as x→∞.

Therefore, uε must attain maximum somewhere. By weak maximum principle, uε achieves

maximum on ∂B(0, 1). That is to say:

uε(x) ≤ max
∂B(0,1)

u, ∀ |x| ≥ 1.

Taking ε→ 0 and also use weak maximum principle again,

u(x) ≤ max
∂B(0,1)

u, ∀ x ∈ R2.

By strong maximum principle, u is constant.

Remark: In fact, the above property is still true on Cn.
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1.3 Green representation of harmonic function on C

By using Green second identity, we infer that for harmonic function u,

u(y) =
1

2π

ˆ
∂Ω

(
u(x)

∂

∂n
log |x− y| − log |x− y|∂u

∂n

)
dA

The following conclusion follows immediately from the above expression.

Corollary 1.6. Let u ∈ C2(Ω) ∩ C0(Ω̄) with ∆u = 0. Then u ∈ C∞(Ω) ∩ C0(Ω̄).

In fact, we have a more simple form if Ω = B(a,R). By translation and rescaling, we

assume a = 0 and R = 1.

Theorem 1.7. Suppose f : ∂B(1)→ R is a continuous function. Then there is continuous

function u : B̄(1)→ R such that

1. u(z) = f(z) for z ∈ ∂B(1).

2. u is harmonic in B(1).

Moreover, u is given by the following formula

u(reiθ) =
1

2π

ˆ 2π

0

[
1− r2

1− 2r cos(θ − t) + r2

]
u(eit) dt

for r ∈ [0, 1) and 0 ≤ θ ≤ 2π.

I just omit the proof here. A proof using holomorphic function will be inside your

homework later. You may also find a proof using Fourier series in Stein’s Fourier analysis.

A proof using Green function can also be found in standard PDE textbook.

A simple consequence of this is the following regularity theorem:

Theorem 1.8. If u : Ω→ R is a continuous function with the mean value property. Then

u is harmonic funciton. In particular, u is smooth function.

Proof. Let x0 ∈ Ω and r > 0 such that B(x0, r) ⊂ Ω. And use above theorem to solve the

dirichlet problem:

∆v = 0 and v = u on ∂B(x0, r).

Since u satisfies Mean value property, also so is v. Therefore, for the function f = v − u.

We can apply maximum principle to conclude that ∀ x ∈ B(x0, r),

0 = inf
∂B(x0,r)

f ≤ f(x) ≤ sup
∂B(x0,r)

f = 0.

Hence, u = v which is harmonic in the strong sense.
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